ȸ α â


α ޴
 󼼺
  м


м

輼 | кϽ

Ⱓ
2020-07-30
PDF
뷮
51 M
PCƮºPC
Ȳ
1, 0, 0
å α׷ ġ ȵǽó?å α׷  ġ
 Ұ
 Ұ
ټ

 Ұ

͸ ̿ м, ʾƿ! α׷ ̵ м ֽϴ. , ̵ , Ȱȭ ͸ ̿ м ο ΰġ âϱ ʼ Ǿϴ. ǹڵ ͸  ϰ, سİ Դϴ. ̵ м ٸ ׷ ƽϴ. ׷ ̷ м ֵ м (Tool) Ұϰ մϴ. ٷ ZSDS Brightics StudioԴϴ. Brightics Studio α׷ , м ʰ м ִ Դϴ. ʿ κ Լ س± Դϴ. ʿ Լ  ϴ, ڵ м ֽϴ. м ó غ е鵵 м Flow ¥ Ư ϰų θ ֽϴ. Brightics Studio ϴ м ̷а ǽ Ʈ Ͽϴ. м , Brightics Studio м  м ʸ ֽϴ. м ó Ͻô е鵵 ֵ Ǯ Ͽϴ. ̸ м ֵ ǥϰ ￴ϴ. å ⺻ ͸ ٷ ٸ ڳ л鵵 м Ȱ ִ ҰϿ Ͽϴ. м ִ ڶ å м ڰ Դϴ.

ڼҰ

: 輼 : 輼 ȸý Ȱ Ͽ, м ֱٿ ǽð м Ʈ ϰ ִ. : ҿ (CRM) ϰ ִ. ֱٿ ȭ ð ϰ ִ. : ͸ ٷ α׷. ͱ ǥ ϰ , Ͱ ̷١ Ʒ ο ȸ ã ̴. : ſ ̼/û μ Ȱ ߴ. ê, ̽ ȭ AI ϰ ִ. : ũ(RM), ڻ DW, ERP / Ͽ. /ؿ ŷó м ϰ ִ.

PART 1 м Ʈ 1.1 Ʈ ȭ 1.1.1 Ʈ ȭ 1.1.2 м ߿䵵 ȭ 1.2 in 1.2.1 о Ȱ 1.2.2 ũ о Ȱ 1.2.3 ǰ о Ȱ 1.3 ô밡 ´ 1.3.1 å ȭ 1.3.2 ý 1.3.3 ŷ 1.3.4 ̵ PART 2 м μ 2.1 м Flow 2.1.1 Ž(EDA, Exploratory Data Analysis) 2.1.2 ó 2.1.3 м 𵨸 2.1.4 м 2.2 м: Maching Learning 2.2.1 ȸͺм(Regression) __2.2.1.1 ȸ(Linear Regression) __2.2.1.2 Penalized Linear Regression __2.2.1.3 Regression 2.2.2 зм(Classification) __2.2.2.1 ƽ ȸ(Logistic Regression) __2.2.2.2 ǻ(Decision Tree) __2.2.2.3 Ʈ(Random Forest) __2.2.2.4 SVM(Support Vector Machine) __2.2.2.5 Classification 2.2.3 м(Clustering) __2.2.3.1 м(Hierarchical Clustering) __2.2.3.2 м(Non-Hierarchical Clustering) __2.2.3.3 Clustering 2.2.4 ӻ(Ensemble) __2.2.4.1 (Bagging) __2.2.4.2 ν(Boosting) PART 3 Brightics Studio 3.1 Brightics Studio Ұ 3.2 Brightics Studio ϱ 3.2.1 Brightics Studio ġ 3.2.2 Brightics Studio 3.3 Brightics Studio Ȱϱ 3.3.1 Ʈ 3.3.2 Data Flow 3.3.3 Report PART 4 Brightics Studio Ȱ Ž ó 4.1 εϱ 4.2 EDA 4.2.1 Statistic Analysis __4.2.1.1 ڷ 캸 __4.2.1.2 ī (Chi-square Test) __4.2.1.3 T(T-Test) __4.2.1.4 Ͽлм(one-way ANOVA) 4.2.2 Visual Analysis __4.2.2.1 Bar Chart __4.2.2.2 Line Chart __4.2.2.3 Box Plot __4.2.2.4 Histogram __4.2.2.5 Scatter Plot __4.2.2.6 Pie Chart __4.2.2.7 Tree map __4.2.2.8 Complex Chart 4.3 ó 4.3.1 Manipulation __4.3.1.1 Filter __4.3.1.2 ó __4.3.1.3 ̻ġ(Outlier) ó 4.3.2 Transform __4.3.2.1 Select Column __4.3.2.2 Join __4.3.2.3 Random Sampling __4.3.2.4 Split Data __4.3.2.5 Pivot __4.3.2.6 Unpivot 4.3.3 Extraction __4.3.3.1 One Hot Encoder __4.3.3.2 Normalization __4.3.3.3 Add Function Columns __4.3.3.4 Bucketizer PART 5 Brightics Studio Ȱ м𵨸 5.1. Kaggle 5.1.1 Kaggle ˾ƺ __5.1.1.1 Kaggle 5.1.2 ݵ ͷ (Regression) _5.1.2.1 ó _5.1.2.2 Linear Regression _5.1.2.3 Penalized Linear Regression - Ridge, Lasso, Elastic Net _5.1.2.4 XGB Regression _5.1.2.5 Regression 5.2 CreDB 5.2.1 CreDB ˾ƺ 5.2.2 CreDB νſ ó __5.2.2.1 Ȳ Ļ __5.2.2.2 , ī߱ __5.2.2.3 Ӻ(1 ̳ ü) 5.2.3 νſ ä (Classification) __5.2.3.1 ó __5.2.3.2 Decision Tree __5.2.3.3 Logistic Regression __5.2.3.4 Random Forest __5.2.3.5 Classification 5.2.4 ΰ (Clustering) __5.2.4.1 ó __5.2.4.2 Hierarchical Clustering __5.2.4.3 K-Means

ټ

  • 10
  • 8
  • 6
  • 4
  • 2

(ѱ 40̳)
侲
Ʈ
 ۼ ۼ õ

ϵ ϴ.